

Exploitation de Résistances Durables aux Septorioses et Fusarioses du Blé Tendre Olivier ROBERT

Objectifs

- ❖ Identifier de nouvelles sources de résistances à la septoriose (Zymoseptoria. tritici)
 - → Dans 3 populations
 - → Dans 8 populations
- ❖ Identifier de nouvelles sources de résistances à la fusariose (F. graminearum)
 - → Dans 1 population

Matériel Végétal

 Sept populations Bioplante constituées de 63 à 97 lignées haploïdes doublées (HD)

Population	Effectif
Apache x Balance	91
FD3 x Robigus	87
Robigus x Soissons	92
FD12 x SE11	88
Cordiale x Nuage	97
Bermude x Timber	82
Nogal x Bio110	63

❖ Une population de 96 lignées SSD RIL F_{6:7} issue du croisement Kulm/M3 (produite par J. Faris de l'USDA-ARS)

Tests de résistance à la septoriose

En serre, au stade juvénile

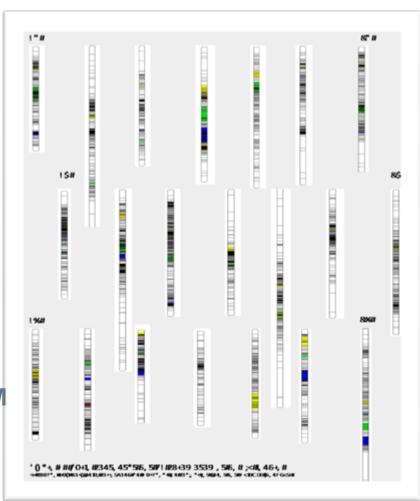
Au champ, au stade adulte

<u>Génotypage</u>

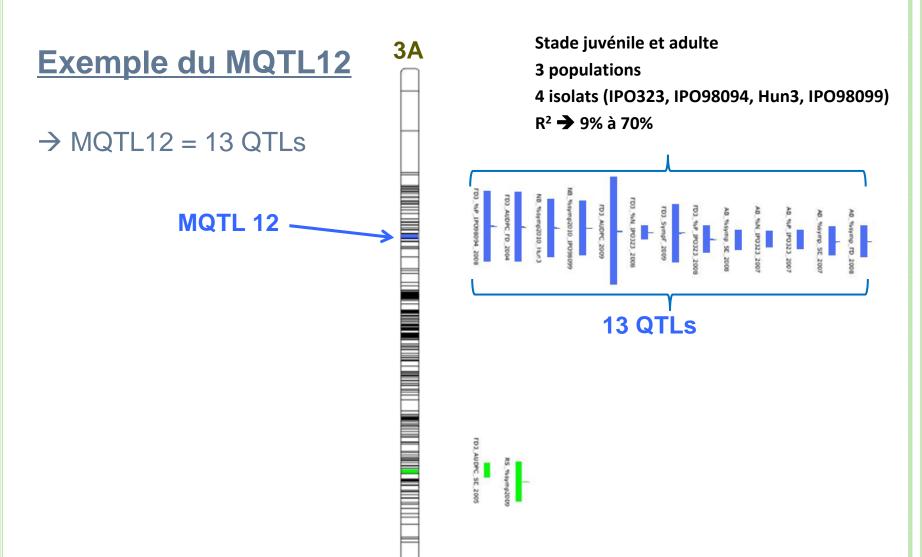
- ❖ De 2500 à 7000 marqueurs DArT (Triticarte Lty) selon les versions de la puce
- Les marqueurs DArT ont été utilisées sur les 7 populations Bioplante

- ❖ De 3 à 284 marqueurs SSR
- **❖ Les marqueurs SSR ont été utilisées sur 4 populations**
- → Apache/Balance (169), FD3/Robigus (57), Nogal/Bio110 (3), Kulm/M3 (284)

Analyses statistiques


- **❖** Cartographie → MapDisto
- ❖ Analyse QTL → WinQTLCartographer
- **❖** Carte consensus et Méta-analyse → MetaQTL
- ❖ Génétique d'association → STRUCTURE, CoCoa 1.0 et TASSEL 2.1

Carte Consensus


(en collaboration avec INRA - GDEC)

Carte Consensus

- 42 cartes
- * 8856 marqueurs
- ❖ 3345 cM Kosambi
- De 170 (4D) à 1322 (3B) marqueurs/chromosome
- Densité moyenne : 2,65 marqueurs/cM

Analyse QTL et Méta-QTL

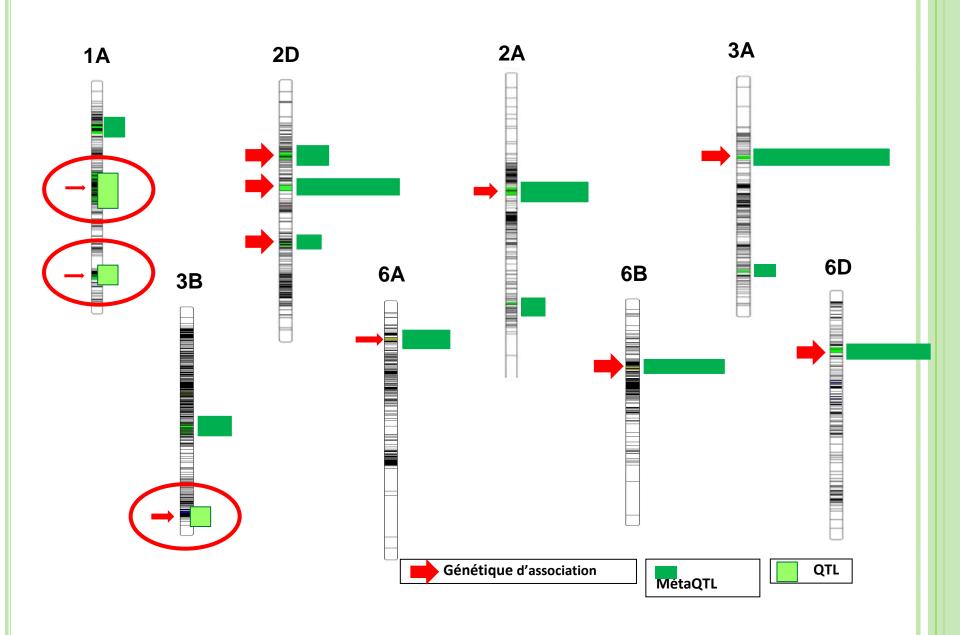
Analyse QTL et Méta-QTL

- ❖ 115 QTL de résistance à la septoriose
- ❖ 66 QTL liés à la hauteur et à la précocité

- **27 MQTL de résistance**
- ❖ 14 MQTL de hauteur et/ou de précocité
- **❖ 10 QTL de résistance**
- → 37 loci de résistance à la septoriose

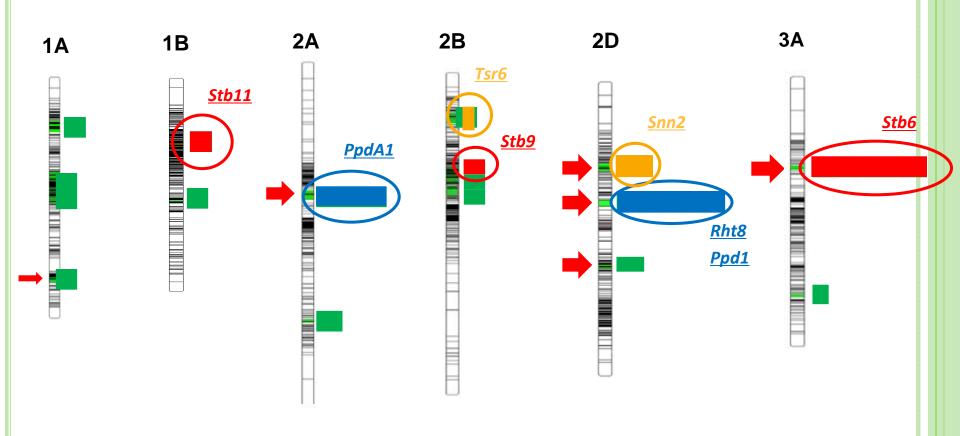
Analyse de Génétique d'Association

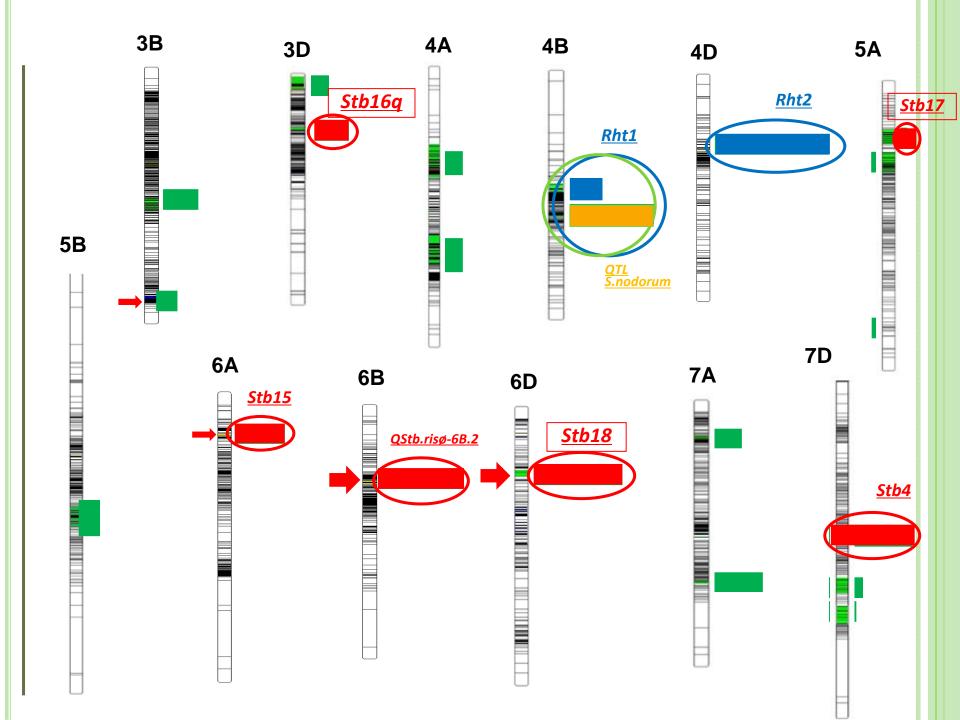
- **❖** 614 individus et 3390 marqueurs → 2 millions de données
- **❖** Structuration → 7 groupes
- * Résultats identiques avec les 2 matrices de parenté (CoCoa ou TASSEL)
- ❖ Note visuelle (1 à 9)
 - ❖ GLM → 13 marqueurs liés (pc<0.001 et R²>2)
 - **♦ MLM** → 10 marqueurs liés


5 communs

- **Pourcentage de symptômes**
 - \Leftrightarrow GLM \Rightarrow 12 marqueurs liés (pc<0.001 et R²>2)
 - ❖ MLM → 7 marqueurs liés

4 communs


→ 28 marqueurs de résistance


Comparaison Analyse de Liaison / Génétique d'Association

Colocalisations

- → Gènes/QTL de résistance à M. graminicola
- → Gènes/QTL de résistance à d'autres maladies

En conclusion - Bilan des résultats exploitables en sélection

Programme de 2 ans (en réalité : 5 ans)

❖ Une carte consensus (8556 marqueurs) obtenue en collaboration avec INRA – GDEC

❖3 Nouveaux gènes majeurs de résistance à la septoriose (*Stb16q, Stb17* et *Stb18*) (collaboration avec ARS-USDA pour *Stb16q* et *Stb17*)

❖27 M-QTL de résistance à la septoriose (11 M-QTL confirmés par Génétique d'Association)

❖10 QTL de résistance à la septoriose (3 QTL confirmés par Génétique d'Association)

En conclusion - Perspectives

- Publications : 3 Articles (1 soumis), 1 mémoire de Doctorat (WUR) et 2 mémoires d'Ingénieur (AgroCampus Ouest)
- La majorité des gènes majeurs, QTL et M-QTL sont exploitables en sélection
- ❖ Mais, pas le Stb16q → Les marqueurs liés au gène sont perfectibles en sélection assistée par marqueurs...
- **❖ Nouveau programme FSOV 2012:**
- Recherche de nouveaux marqueurs étroitement liés au gène Stb16q
- Partenaires: Florimond Desprez (coord.), INRA-GDEC, INRA-Bioger, Arvalis, R2n, PRI, ARS-USDA