Analyse et identification des caractéristiques génétiques influençant la composition du grain de blés destinés à la production de bio-éthanol

Gérard BRANlard1, Clément DEBITON1, Pascale GADONNA1, Larbi RAZHI2, Philippe LEREBOUR1
1 : INRA UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont-Ferrand
2 : Institut Polytechnique LaSalle Beauvais.(I.P.L.B.), 60 000 Beauvais,
3 : CETAC, Rue Coq Héron, 75001 Paris


Objectifs :
1. Mise en évidence des caractéristiques du grain et de la composition de l’amidon et de ses propriétés d’hydrolyse associées à une variété génétique
2. Identification de l’effet des trois gènes wax A, B, C sur le paramètre de rendement et de vitesse de conversion de l’amidon dans la production de bioéthanol
3. Développement de outils de définition ou de variables de mesure utilisables en sélection
4. Identification des caractéristiques optimales à rechercher dans un génotype pour obtenir une variété à haut rendement en éthanol.

Les expériences conduites
3. Analyses des caractéristiques physico-chimiques et technologiques des grains : DMG, PS, % protéines, durée, viscosité des pentosanes, distribution des tailles des granules d’amidon (Figures 1 et 2), teneur en amylase, diversité des sous unités glucénotiques de haut et faible poids moléculaire.

Résultats des essais multi-locaux
Un essai multi-local de la trentaine de cultivars pratiquement choisies pour offrir une grande diversité de composition du grain a été implanté deux années consécutives en plusieurs lieux en France.

Les essais ont confirmé l’importance des effets génétiques et environnementaux sur la production de l’amidon et l’efficacité de l’hydrolyse associée à la variété génétique. Le tableau 1 montre que :
- des rendements élevés en glucose et en éthanol pouvaient être atteints.
- Les valeurs de glucose libéré sont comprises entre 640 et 770 kg/ t de MS.
- Les variétés exploitant le rendement moyen en éthanol de 441 LT MS à 473 LT MS.
- La moitié de tous les tests confirme que des lignages de 455,5 LT MS. Cette valeur en éthanol est bien supérieure aux 350 LT couramment rapportées par les industriels pour le biotéch.
- L’hérédité des caractères rendement en glucose et en éthanol était faible. Les effets liés aux variations de culture sur ces caractères sont très significatifs (Tableau 1).
- Les différences significatives entre variétés pour ces deux critères, exprimées par tonne de blé et à fortiori par hectare (Figure 3).

Les essais ont confirmé l’importance de la quantité d’amidon (correlée négativement à la teneur en protéines) dans les rendements en glucose et en éthanol. Le rendement en glucose influence significativement la production d’éthanol par rapport à la quantité de glucose. Pour l’efficacité de l’amidon, des variations de composition du grain ont été révélées associées aux rendements en glucose et en éthanol. Une analyse de variance a conduit à la signification de ces variables dans le processus de production d’éthanol et sur leur utilisation en sélection.

Huit lignes isogéniques waxy de trois variétés françaises ont été implantées dans un essai multi-local. L’analyse de variance a montré des effets significatifs pour de nombreux gènes et les caractéristiques (Tableau 2) qui semblent être invariants sur les deux premiers essais multi-locaux. Les lignes dépouvrées d’amylase ont produit un peu moins de glucose et d’éthanol que les variétés normales.

Résultats de l’analyse protéomique des lignées isogéniques waxy
L’introduction d’un allèle nul (non codant) à chacun des gènes Wax-A1, Wax-B1 et Wax-D1 dans un même fond génétique fait disparaître les Granules Binding Starch Synthases (GBSS) : enzymes impliquées dans la synthèse de l’amidon (produit de glucose de synthèse). Dans le cadre de la thèse CIFRE (developpée par Clément Debiton sur ce projet), le protocole des grains des lignées isogéniques de Trémie, qui possèdent un, deux ou trois allèles WX nuls, a été étudié pour connaître la réponse du genome à la présence de ces allèles. Les protocoles de l’amidon (albumines et globulines ainsi que les protéines amylolytiques) ont été étudiées par une approche protéomique. Cette démarche analytique a mis en évidence des variations quantitatives des enzymes en réponse à la présence des trois allèles WX. La sucrose synthase ainsi que le fructose 1,6-bisphosphate aldolase sont significativement augmentées. En revanche l’ADP glucque pyrophosphorése (première enzyme impliquée dans la synthèse de l’amidon) est significativement diminuée Ces résultats expliquent l’effet d’action de saccharose dans les biens waxy et leur quantité parfois très faible alors en éthanol (PMGN diminué 30% chez Trémie waxy). L’analyse des protéines internes aux granules d’amidon a été également conduite. Ainsi, sur les 352 spots protéiques révélés, 86 ont varié significativement (Figure 4). On observe une relation étroite entre la quantité de ces GBSS et celle de l’amylase synthétisée dans le grain. On constate que chacun des gènes Wax-A1 et Wax-B1 et Wax-D1 ne contribue pas de façon équivalente à la production d’amylase et que l’efficacité des effets n’est pas respectée [1]. De nombreuses variations sont observées pour la synthèse et l’activité de la GBSS impliquée dans la maléolysation, dans l’amylopectine et de l’amidon, notamment du des variations significatives sur les protéines de stress et de défense [2]. Ces observations suggèrent un développement du grain incompêt pour la lignée dépouvrée d’amylase.

Conclusion
Bien que les bilans expérimentaux dans le réseau d’essai de ce projet aient été choisis comme relativement bien adaptés à la production d’éthanol, l’étude a fait ressortir des caractéristiques génétiques du grain qui permettrait l’orientation de l’expérimentation sur le seletion de ces caractéristiques. Un protocole d’analyse orienté vers le choix de ces caractéristiques de glucolation de l’amidon en éthanol ainsi que l’identification des caractéristiques du grain associées à cette transformation feraient l’objet d’une publication à paraître après le délai de confidentialité du projet FSIV. Les analyses protéomiques des protéines de l’amidon (albumines, globulines et amylases) ainsi que des protéines associées aux granules d’amidon ont fait l’objet de deux publications référencées ci-dessous. Ce projet FSIV a apporté des connaissances sur la génétique de l’amidon et du blé permet de dégager les caractéristiques optimales à rechercher dans un génotype pour obtenir une variété à haut rendement en éthanol.

References