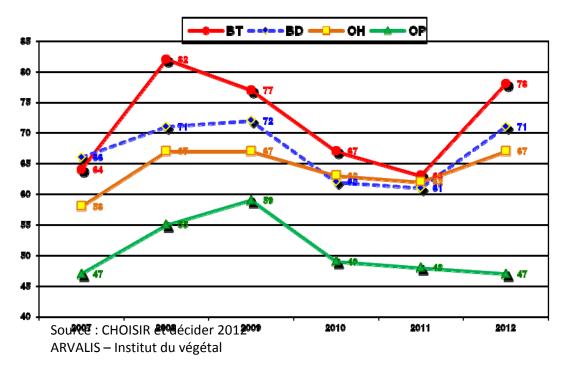


Evaluation de la résistance du blé à la septoriose provoquée par Mycosphaerella graminicola

Delphine HOURCADE



Contexte

La septoriose

☐ La maladie la plus préjudiciable sur blé tendre : nuisibilité élevée et présente partout

□ 1^{er} moyen de lutte : le traitement fongicide

Investissement fongicide moyen sur céréales par hectare en €

☐ La résistance variétale : levier à exploiter

Plan

- 1- Caractérisation de la résistance variétale
- 2- Caractérisation phénotypique et moléculaire des populations françaises de septoriose
- 3- Mise au point d'outils d'étude de la résistance partielle
- 4- Mise au point de protocoles de phénotypage au stade adulte
- 5- Conclusion

Caractérisation phénotypique et moléculaire de la résistance variétale

Phénotypage au stade plantule

□ Phenotypage de 58 variétés X 18 isolats : stade 1 feuille (PRI) → 15 gènes Stb postulés

Nombre de variétés avec :

Stb1	0
Stb2	1 🔑 Peu de gènes Stb dans le matériel français excepté Stb
Stb3	Gènes présents dans des variétés résistantes
Stb4	1
Stb5	o Stb2, Stb4, Stb8
Stb6	²⁸
Stb7	4
Stb8	Stb3, Stb7, Stb9
Stb9	Variétés connues résistantes, sensibles quelle que
Stb10	o soit la souche
Stb11	0
Stb12	o - Toisondor, Maxwell, Boisseau, Koreli
Stb13	(résistance adulte)
Stb14	4 (Tesistance addite)
Stb15	0

Marqueurs moléculaires

□ Comparaison du phénotypage avec le génotypage de marqueurs SSR publics (Goodwin 2007)

Gene	Localisation	Marqueurs et distance au gène	Parent donneur	Stade de développement évalué				
Stb1	5BL	barc74(2.8 cM), gwm335	Bulgaria 88	Plantule et adulte				
Stb2	3BS gwm389 (0.9 cM), gwm533, gwm493		Veranopolis	Plantule				
Stb3	3 7AS wmc83		Israel 493	Plantule				
Stb4	7DS	gwm111 (0.7 cM)	Tadinia	Plantule et adulte				
Stb5	7DS	gwm44 (7.2 cM)	Chineese Spring (Syntetic 7D)					
Stb6	3AS	gwm369 (2 cM)	Senat, Flame, Kavkaz-K4500	Plantule, adulte et sur feuilles				
Stb7	b7 4AL wmc313 (0.5 cM), wmc219, gwm160		Estanzuela Federal	Plantule et feuilles				
Stb8	8 7BL gwm146, gwm577		Syntetic W7984	Plantule				
Stb9	2BL	gpw1214, gpw4044, gpw5039, wmc317, barc0129	Courtot, Tonic	Plantule				
Stb10	1D	gwm848 (private marker)	Kavkaz-K4500					
Stb11	1BS	barc008 (<1cM)	TE 9111					
Stb12	tb12 4AL wmc219		Kavkaz-K4500	Plantule et feuilles				
Stb13	Stb13 7BL wmc396							
Stb14	3BS	wmc500 (2cM), wmc632 (5cM)						
Stb15	6AS	psr904 (RFLP marker)	Arina	Feuilles				

- Peu de marqueurs peuvent être utilisés pour caractériser le materiel français
- > Stb2 (avec gwm533, gwm493, gwm389) & Stb3 (with wmc83) Stb4 (with gwm111) semblent prometteurs
- Nécessité de confirmer sur un plus grand panel

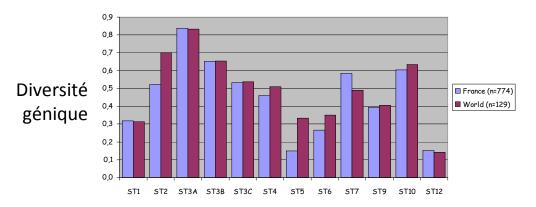
Caractérisation phénotypique et moléculaire des populations françaises de septoriose

Echantillonage

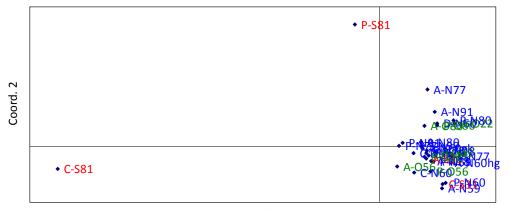

- Etude antérieure:
 - 30 isolates, Nord France, fin 90s (Tabib Ghaffary SM 2011)
 - Stb 1-5 efficace en France ; Stb 6-9 & 11 contournés

□ 2 nouvelles études:

- Sur 2 variétés fortement cultivées et moyennement résistantes
- Sur diverses variétés sensibles et résistantes


□ 1690 isolats

Nombre de souches isolées



Etude génétique

- Développement et validation de 16 SSR par Goodwin et al. et Walker, Confais, Gautier & Marcel (INRA Bioger)
- Génotypage de 774 isolats représentants 32 populations (lieu de prélèvement, année, variété) (Ducasse, Gout, Goyeau & Marcel, INRA Bioger)

☐ Faible différentiation génétique entre populations

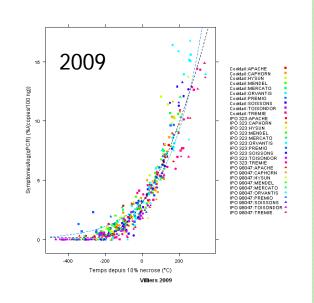
- 28 pop, types sexuels répartis 1:1
- Distances génétiques faibles entre paires de populations

Coord. 1

Pathotypage

- □ 150 souches testées sur une collection de variétés différentielles :
- > Gènes Stb 1 à Stb 5 restent relativement efficaces
- ➤ Combinaison de *Stb10* + *Stb 12* et d'autres avec *Stb18* semblent efficaces
- ➤ VIGILANCE : Plusieurs souches multivirulentes et avirulentes pour Stb15

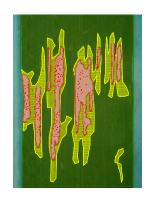
		Г	M. graminicola isolates																												
			Netherlands		France																										
		F	2		1	6	<u>.</u>			6	9	F	12	13	#	15	16	17	18	19	20	21	22	23	24	25	26	22	28	29	30
Wheat cultivar	Stb Gene	323	94269	98001	98021	98022	98028	38031	98032	98033	_	38035	38038	38042	38046	98047	98050	38051	38057	98072	38075	98078	98094	38037	38033	98113	93018	99031	99032	33038	93048
Bulgaria	Stb1, 5BL & Stb6		Г	Г	Г			Т	Т	Т							0														
Veranopolis	Stb2, 3Bs & Stb6		Г	0	0		Т	Т	Т	Т	Т						0										0				0
Israel 493	Stb3, 7As & Stb6		Г	0	0		Т	Т	Т	Г																					0
Tadinia	Stb4, 7Ds & Stb6	0		0	0		т	т	т	Т	Т	Г																			0
CS/synthetic (6x)	Stb5, 7Ds		Г	0	0		Т	Т	Т	Т	Т	0															0				0
Shafir	Stb6, 3As		Г	0		Г		Т	Т	Г	П																				0
Estanzuela Federal	Stb7, 4AL				Г	Г	Г	Т	Г	Г	Г																				
M6 Synth(w7984)	Stb8, 7BL					П	Т		П	Т	П																				
Courtot	Stb9, 2B		Г	П	Г	Т	Г			Т	Т																				
Kavkaz - K4500	Stb10(1D),12(4AL) & Stb6 &7			0													0														0
TE9111	Stb11, 1Bs & Stb6& Stb7	0		П	0	Т	Т	Т	Г	П																					0


Mise au point d'outils d'étude de la résistance partielle

Méthodes de PCR quantitative

Gène IGS **Transposon CYTB** Isomérase-TUB1 TF6 réductase: ILV5 copies multiples copies multiples copies multiples copie unique copie unique Cible nucléaires nucléaires mitochondriales nucléaire nucléaire Sensibilité ++ Spécificité +/-++ ++ Variabilité chez M. graminicola non non oui non non Détection dans les échantillons environnementaux +/-+/-++ ++ ++

3 gènes ciblés


- ➤ Cible TF6 : bonne spécificité et sensibilité
- Echantillons environnementaux : possibilité d'anticiper la date d'apparition des symptômes avec une interférence variété X souche

Résistance quantitative

■ Evaluation de 15 paramètres quantitatifs au cours du cycle d'infection au stade adulte (cinétique de développement)

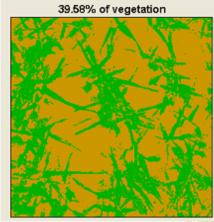
9 variétés x 3 isolats locaux + isolat IPO323

Les composantes principales de l'agressivité du champignon :

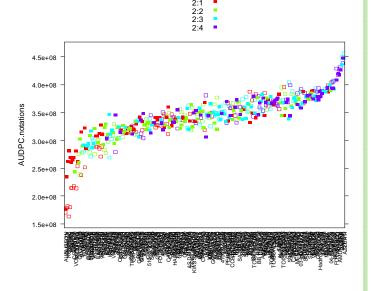
variable	définition	signification biologique
TCHLmax	temps du pic de chlorose	période d'incubation
LatSPO5	temps pour que SPO = 5% de SPOmax	période de latence
SPOmax	surface sporulante finale (%)	sévérité d'attaque
LatNEC50	temps pour que NEC = 50% de NECmax	vitesse de développent
rNEC	vitesse de développent de NEC	
PYCdens	densité de pycnides	capacité de sporulation
nbSPOapx ¹	nombre de spores / pycnide	

- > Différentes corrélations étudiées
- Modèle de sporulation d'une lésion d'une cohorte de pycnides (évolution du nombre et de l'âge des pycnides présentes) en cours d'élaboration.

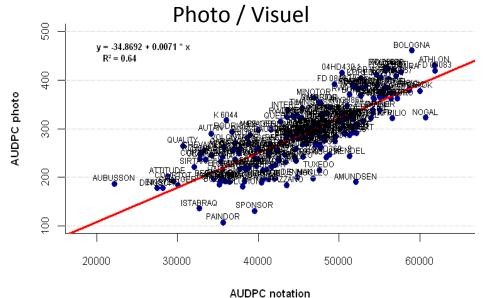
Mise au point de protocoles de phénotypage au stade adulte

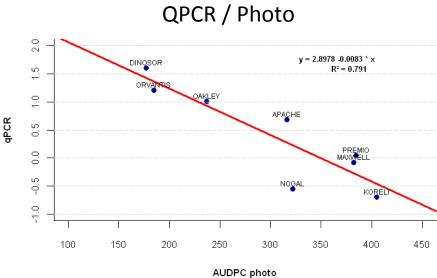

Résistance au champ

- □ Site expérimental :Plélo (22)
- Materiel végétal: 212 variétés commerciales
- Design:
 - •Inoculation contrôlée avec la souche STB n°98046:
 - o 3 inoculations successives avec un intervalle de 5 jours
 - o 1ere inoculation à Z39 des variétés les plus precoces
 - •4 sous-blocs de précocité et 4 variétés contrôle (APACHE, CAPHORN, PREMIO, TOISONDOR) répétées 5 fois / bloc
 - •2 répétitions
 - •1 parcelle: 9 m²


Multi phénotypage

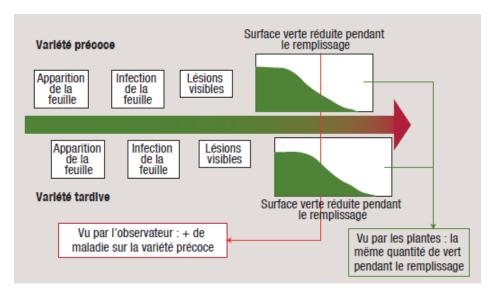
- Différentes mesures
 - Notation visuelle classique
 - Prise de photos
 - Scans de feuilles
 - PCR quantitative
- Analyse de données



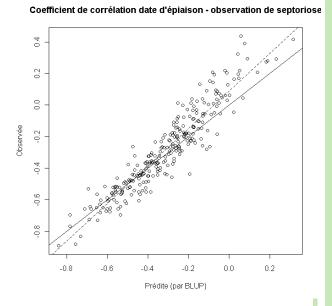


Corrélations entre mesures

Classification Variétale


□ Classement comparés entre les 3 méthodes d'évaluation de la maladie

Class. Notation	Class. Photo	Class. Scan
NOGAL	KORELI	MAXWELL
MAXWELL	PREMIO	KORELI
KORELI	MAXWELL	NOGAL
PREMIO	NOGAL	PREMIO
APACHE	APACHE	APACHE
OAKLEY	OAKLEY	OAKLEY
ORVANTIS	ORVANTIS	ORVANTIS
DINOSOR	DINOSOR	DINOSOR


> Des méthodes complémentaires et intéressants qui peuvent mettre en évidence des mécanismes de résistance différents

Corrélation Précocité

Etude des corrélations entre note de septoriose et date d'épiaison

Gouache & Robert 2009, 2010

- Utilisation de la date d'épiaison comme covariable permet de mieux évaluer le potentiel de résistance des variétés
 - Conditions : observations faites à partir de 500° C après apparition de F2

Conclusions

- ▶ Progrès collectif → dynamisme positif pour les semenciers et les instituts de recherche
- Quelques gènes Stb intéressants
- Besoin de mieux caractériser la résistance des variétés cultivées :
 - Marqueurs moléculaires → Etudes de génétique d'association
 - Phénotypage au champ et en serre
 - Nécessité d'étudier en parallèle les populations de *M. graminicola*
 - -Pathotypage couteux
 - -Besoin de développer des marqueurs moléculaires pour décrire la génétique du champignon
 - → Conséquente <u>collection d'isolats</u> disponible
- Outils pour les études d'épidémiologie quantitative: Clé pour comprendre la durabilité des résistances

Les Contributeurs

ARVALIS-Institut du végétal : David GOUACHE, Delphine HOURCADE

INRA BIOGER: Marc-Henri LEBRUN, Thierry MARCEL, Colette AUDEON, Aurélie DUCASSE,

Henriette GOYEAU, Lilian GOUT, Frédéric SUFFERT

BIOPLANTE – FLORIMOND-DESPREZ: Olivier ROBERT

RAGT: Christophe MICHELET

GEVES: Valérie CADOT

PRI: SMT Ghaffary, Gert GH KEMA