

Mickaël THROUDE / Limagrain / coordinateur du projet
Diane MATHER / Université d'Adélaïde
Matthieu BOGARD / Arvalis-Institut du Végétal

Objectifs du projet CRACQ

1- Etude de la variabilité allélique naturelle, par séquençage d'Exome

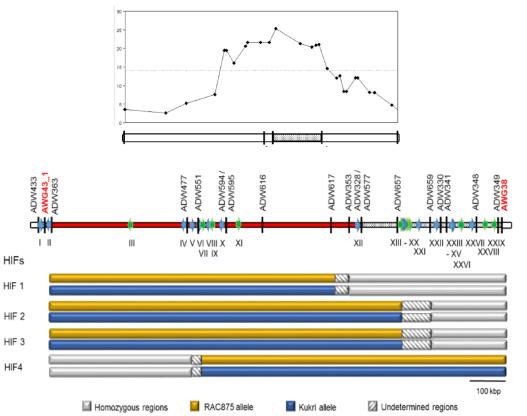
2- Développement de mutants TILLING pour démontrer l'effet du gène candidat UBP

3- Caractérisation phénotypique du gène UBP et des mécanismes physiologiques (blés d'hiver et de printemps)

4- Analyse d'expression du gène UPB en conditions de stress thermique et hydrique (séquençage d'ARNm)

Plateforme wheelie bins, Australie

Objectif : Améliorer les performances des blés d'hiver et de printemps européens sous conditions de stress hydrique et thermique en utilisant un QTL de tolérance provenant d'un blé de printemps australiens


Essai Alixan 2021, France

Context: le QTL qDHY.3BL et le gène UBP

QTL de maintien du rendement en conditions de stress hydrique et thermique :

- ✓ identifié en 2013 (Bonneau et al.), cloné en 2021 (Thomelin et al.)
- ✓ chromosome 3B, donneur RAC875 (population RAC875 x KUKRI)

Theor Appl Genet (2013) 126:747–761 DOI 10.1007/s00122-012-2015-3

ORIGINAL PAPER

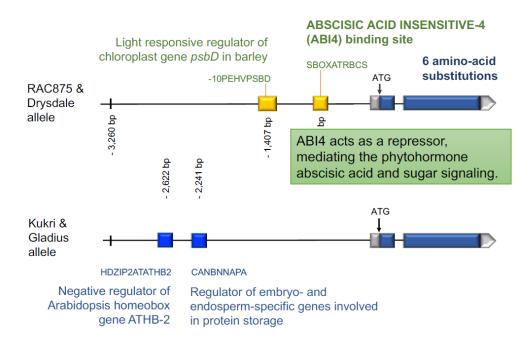
Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat

Julien Bonneau · Julian Taylor · Boris Parent · Dion Bennett · Matthew Reynolds · Catherine Feuillet Peter Langridge · Diane Mather

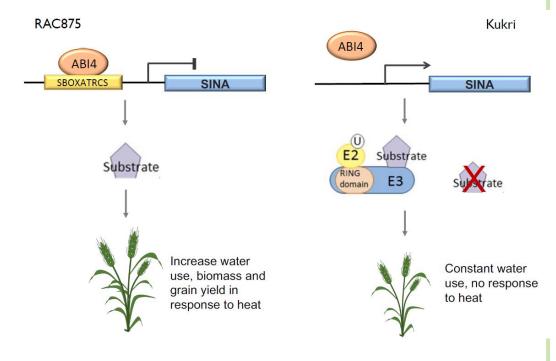
> The wheat Seven in Absentia gene is associated with increases in biomass and yield in hot climates

Pauline Thomelin, Julien Bonneau, Chris Brien, Radoslaw Suchecki, Ute Baumann, Priyanka Kalambettu, Peter Langridge, © Penny Tricker, Delphine Fleury

doi: https://doi.org/10.1101/726802



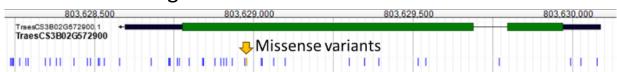
Context : le QTL qDHY.3BL et le gène UBP


Gène candidat et hypothèse :

- ✓ TraesCS3B02G572900 : chr3B:803628607, 2 exons
- Fonction: E3 ubiquitin-protein ligase (nommé UBP)
- Famille: Seven in Absentia, famille SINA
- Régulateur négatif appartenant au complexe ubiquitine-protéasome
- Plusieurs variants identifiés dans la région promotrice

Hypothèse de mode d'action :

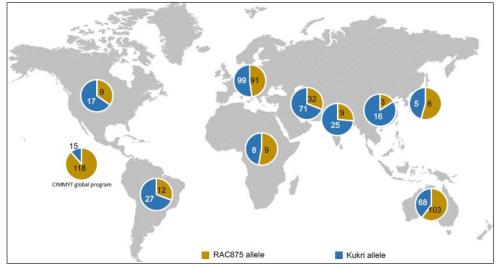
Quand le gène est sous-exprimé chez la lignée RAC875, le protéasome ne serait pas fonctionnel et par conséquent, la protéine cible ne serait pas dégradée, ce qui aurait un effet positif sur la biomasse et le développement des grains


FSOV CRACO 04/04/2024

1- Etude de la variabilité allélique naturelle

Analyses par séquençage d'Exome de 2 panels :

- > 7 gènes candidats dans la zone du QTL 3B + 14 copies homéologues A et D
- > 528 blés d'hiver (Core collection Breedwheat + Elites EU)
- > 627 blés de printemps (variabilité mondiale)
- √ 2321 variants identifiés sur la zone du QTL 3B
- √ candidat UBP : 42 variants > 30 géniques + 12 promoteur
- ✓ Seulement 2 variants non-sens

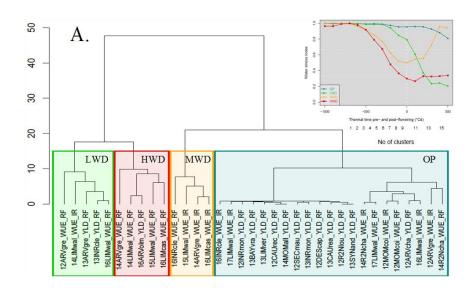

gène UPB: TraesCS3B01G572900

- ✓ Pas de variants entre RAC875 vs Absalon et Altigo
- ✓ SNP ADW595 entre RAC875 et Kukri, identifié par l'UA retrouvé (SNP causal ?)

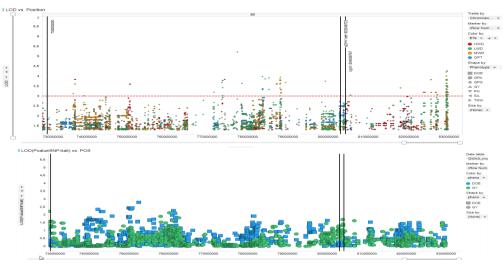
✓ Fréquence ADW595 dans les blés d'hiver séquencés :

- > 280 individus portant le var RAC875
- > fréquence élevée de 55.34 %, seulement 2 haplotypes observés au sein des blés d'hiver
- ✓ Fréquence ADW595 dans les blés de printemps séquencés :
- > fréquence élevée en Europe et Australie (> 50 %)

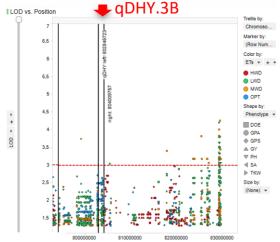
Thomelin et al. 2021



5

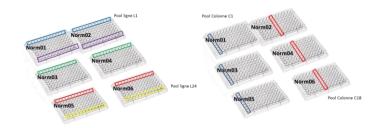

1- Etude de la variabilité allélique naturelle

Analyse GWAS sur un panel hiver:


- ✓ 21 variants couvrant le gène UBP génotypage KASPAR + 161K SNP Axiom
- ✓ Données phénotypiques Breedwheat (Touzy et al 2019)
- √ 4 types d'environnements de stress hydrique
- √ 35 essais (2012-2017)

✓ Analyse GWAS, différents modèles, par environnement & multi-environnement :

Aucune association trouvée au niveau du QTL qDHY.3BL :



2- Développement de mutants TILLING

4 populations de Tilling :

- ✓ Blés printemps : GLADIUS et CADENZA
- ✓ Blés hiver : APACHE et KALAHARI
- ✓ 3 genes analysés : UBP 3A, 3B and 3D.
- √ Séquençage par capture en pools 2D
- 2300 plantes par pop

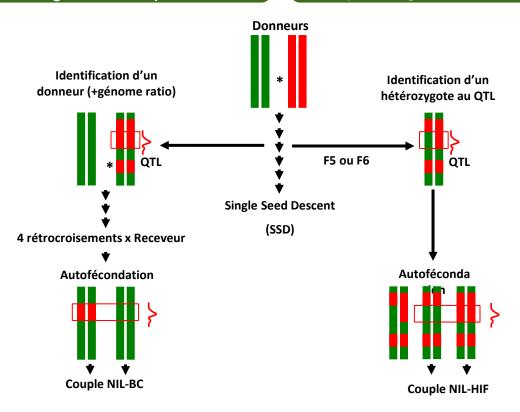
➤ Validation des mutations par génotypage KASPar

- ✓ Blés hiver : seulement 4 mutants identifiés
- Pas de mutants KO sur UBP 3B

Population	Mutant ID	Gène	chrom.	Impact	mutation type
Apache	APB_3843	TraesCS3A01G505400	3A	HIGH	stop_gained
KALAHARI	Kal_06_302	TraesCS3A01G505400	3A	HIGH	stop_gained
KALAHARI	Kal_06_177	TraesCS3A01G505400	3A	HIGH	stop_gained
KALAHARI	Kal_06_196	TraesCS3B01G572900	3B	HIGH	splice_intron_variant

- ✓ Blés printemps : seulement 2 mutants identifiés
- Mutation STOP sur UBP 3B en position 417
- Mutation STOP sur UBP 3B en position 1054

- ✓ Pyramidage des mutations au cours du projet
- ✓ Pas assez de semences pour évaluation
- ✓ Pas de triple mutant ABD


Matériel disponible

NIL-BC

Near Isogenic Lines by BackCross

NIL-HIF

NIL by Heterogeneous inbred families

NIL-BC et HIF

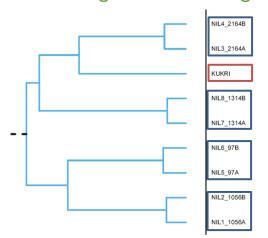
✓ 8 couples NIL fond hiver:

RAC875 x LG-ABSALON et LG-ALTIGO

Code semis	nom lignée	Couple NIL	allele	Туре
LGPB20-0011	RAC-R18-03_1	RAC-R18-03	Absalon	BC by Absalon
LGPB20-0012	RAC-R18-03_3	RAC-R18-03	RAC	BC by Absalon
LGPB20-0014	RAC-R18-07_2	RAC-R18-07	Absalon	BC by Absalon
LGPB20-0013	RAC-R18-07_0	RAC-R18-07	RAC	BC by Absalon
LGPB20-0015	RAC-R18-08_0	RAC-R18-08	Absalon	BC by Absalon
LGPB20-0016	RAC-R18-08_4	RAC-R18-08	RAC	BC by Absalon
LGPB20-0017	RAC-R18-09_0	RAC-R18-09	Absalon	BC by Absalon
LGPB20-0018	RAC-R18-09_4	RAC-R18-09	RAC	BC by Absalon
LGPB20-0019	RAC-R18-19_0	RAC-R18-19	Absalon	BC by Absalon
LGPB20-0020	RAC-R18-19_4	RAC-R18-19	RAC	BC by Absalon
ABSALON	LG-ABSALON	control	Absalon	line
RAC	RAC875	control	RAC	line

_					
	CODE semis	nom lignée	Couple NIL	allele	Туре
1	RAC-11	RAAL_Q3B_056.2_R	RAAL_Q3B_056.2	ALT	HIF
ı	RAC-13	RAAL_Q3B_056.2_D	RAAL_Q3B_056.2	RAC	HIF
1	RAC-22	RAAL_Q3B_118.2_R	RAAL_Q3B_118.2	ALT	HIF
1	RAC-24	RAAL_Q3B_118.2_D	RAAL_Q3B_118.2	RAC	HIF
1	RAC-28	RAAL_Q3B_153.2_R	RAAL_Q3B_153.2	ALT	HIF
ı	RAC-30	RAAL_Q3B_153.2_D	RAAL_Q3B_153.2	RAC	HIF
ì	ALT	Altigo	control	ALT	line
ì	RAC	RAC875	control	RAC	line
_				-	

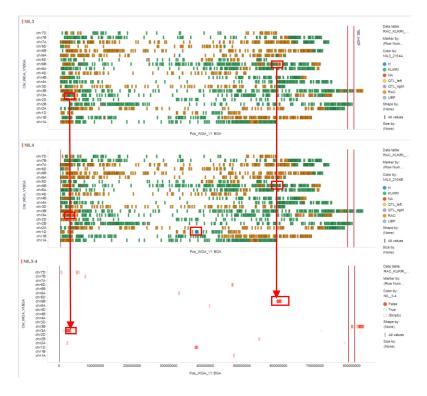
✓ 8 couples NIL fond printemps:


RAC875 x KUKRI

CODE semis	nom lignée	Couple NIL	allele	Туре
NIL 1	1056 A	1056	RAC	HIF
NIL 2	1056 B	1056	Kukri	HIF
NIL 3	2164 A	2164	RAC	HIF
NIL 4	2164 B	2164	Kukri	HIF
NIL 5	97 A	97	RAC	HIF
NIL 6	97 B	97	Kukri	HIF
NIL 7	1314 A	1314	RAC	HIF
NIL 8	1314 B	1314	Kukri	HIF

Caractérisation génétique du Matériel : génotypage 18 000 SNP

- ✓ Exemple NIL HIF RAC875 x KUKRI
- Dendogram Clustering



Distance génétique (Roger)

	KUKRI	RAC875	NIL1_1056A	NIL2_1056B	NIL3_2164A	NIL4_2164B	NIL5_97A	NIL6_97B	NIL7_1314A	NIL8_1314B
KUKRI	0	0.751	0.499	0.495	0.488	0.485	0.525	0.525	0.512	0.518
RAC875	0.751	0	0.558	0.563	0.57	0.572	0.536	0.534	0.546	0.541
NIL1_1056A	0.499	0.558	0	0.102	0.57	0.569	0.443	0.437	0.52	0.522
NIL2_1056B	0.495	0.563	0.102	0	0.567	0.564	0.452	0.441	0.517	0.519
NIL3_2164A	0.488	0.57	0.57	0.567	0	0.112	0.592	0.589	0.564	0.566
NIL4_2164B	0.485	0.572	0.569	0.564	0.112	0	0.584	0.58	0.561	0.565
NIL5_97A	0.525	0.536	0.443	0.452	0.592	0.584	0	0.118	0.539	0.545
NIL6_97B	0.525	0.534	0.437	0.441	0.589	0.58	0.118	0	0.544	0.548
NIL7_1314A	0.512	0.546	0.52	0.517	0.564	0.561	0.539	0.544	0	0.097
NIL8_1314B	0.518	0.541	0.522	0.519	0.566	0.565	0.545	0.548	0.097	0

> distance de 0.09 à 0.11

Niveau d'homologie couples NIL

> Peu de zones divergentes ou mal fixées (ex NIL 2164 : 3A, 6B)

- Expertise des allèles aux locus liés à la vernalisation et photopériode
- ✓ SNP KASPar Vrn et Ppd

NIL Pairs	Ppd-D1 #2D (PpdD)	Vrn-A1 #5A Vrn1A	Vrn-B1 #5B Vrn1B	Vrn-D1 #5D Vrn1D	Vrn3D	Vrn2 #5A (BWS5494)	VRN3A (BWS5597)	Ppd-B1 #2B(PPDB) 1 late to 3 early
Kukri	NOT SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	1 copie
RAC875	SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	3 copies
1056	SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	3 copies
1056	SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	3 copies
2164	NOT SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	1 copie
2164	NOT SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	1 copie
97	SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	3 copies
97	SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	3 copies
1314	NOT SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	3 copies
1314	NOT SENS	Spring	SPRING	WINTER	LATER	A:A	G:G	3 copies

Conclusions:

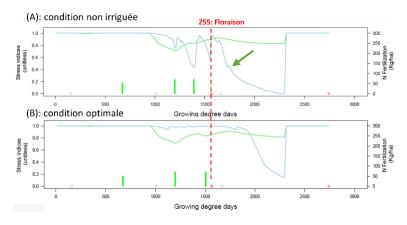
- ✓ Matériel fixé
- ✓ Bonne qualité des couples isogéniques NIL BC et NIL HIF (proches génétiquement)
- Pas de variations des gènes de précocité au sein des couples NIL

FSOV CRACQ 04/04/2024

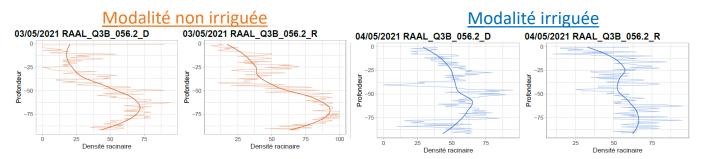
30 essais réalisés de 2019 à 2022

Hiver & Printemps : France, Etats-Unis, Australie, Espagne, Drought Spotter

Année	Génétique	Type NIL	Type	Nom couples NIL	Lieu	Pays	Provider	modalités	Nb parcelles
								DRY/ HEAT/CONTROL	
2021	RACx Altigo	HIF	Hiver	RAAL_Q3B (056-118)	DroughtSpotter (URRBRAE)	Australie	UA	(2 dates de semis) x 4 rep	96 pots
2021	RACx Altigo	HIF	Hiver	RAAL Q3B (056-118-153)	GREOUX-LES-BAINS	France	Arvalis	DRY/IRR x 3 rep	48
2020	RACx Altigo	HIF	Hiver	RAAL Q3B (056-118-153)	DroughtSpotter (URRBRAE)	Australie	UA	DRY/ HEAT/CONTROL x 4 rep	72 pots
2020	RACx Altigo	HIF	Hiver	RAAL Q3B (056-118-153)	CHATEAUNEUF	France	Heliantis	DRY/ IRR x 4 rep	64
2020	RACx Altigo	HIF	Hiver	RAAL Q3B (056-118-153)	SAINT-BONNET-DE-MURE	France	Arvalis	DRY/ IRR x 3 rep	48
2019	RACx Altigo	HIF	Hiver	RAAL Q3B (056-118-153)	GREOUX-LES-BAINS	France	Arvalis	DRY/ IRR x 3 rep	48
2019	RACx Altigo	HIF	Hiver	RAAL Q3B (056-118-153)	PUSIGNAN	France	Arvalis	DRY/ IRR x 4 rep	64
2019	RACx Altigo	HIF	Hiver	RAAL Q3B (056-118-153)	WALLA WALLA	Etats-Unis	Limagrain	DRY/ IRR x 4 rep	64
2022	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	CORDOBA	Espagne	Limagrain	IRR x 4 rep	64
2022	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	ENSAYOS-EN-ALBACETE	Espagne	Limagrain	IRR x 4 rep	64
2022	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	JEREZ	Espagne	Limagrain	DRY x 4 rep	64
2022	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	CARMONA	Espagne	Limagrain	DRY x 4 rep	64
2021	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	CORDOBA	Espagne	Limagrain	IRR x 4 rep	32
2021	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	ENSAYOS-EN-ALBACETE	Espagne	Limagrain	IRR x 4 rep	32
2021	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	JEREZ	Espagne	Limagrain	DRY x 4 rep	32
2021	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	CARMONA	Espagne	Limagrain	DRY x 4 rep	31
2020	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	CARMONA	Espagne	Limagrain	DRY x 4 rep	27
2020	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	CORDOBA	Espagne	Limagrain	IRR x 4 rep	32
2020	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	GATTON	Australie	UA	DRY x 4 rep	32
2020	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	GATTON	Australie	UA	IRR (2 dates de semis) x 4 rep	64
2020	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	WARWICK	Australie	UA	DRY x 4 rep	32
2020	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	WARWICK	Australie	UA	IRR (2 dates de semis) x 4 rep	64
2020	RACx Kukri	HIF	Printemps	UA lines 2164-97-1314	GATTON	Australie	UA	IRR (2 dates de semis) x 4 rep	48
2020	RACx Kukri	HIF	Printemps	UA lines 2164-97-1314	WARWICK	Australie	UA	IRR x 4 rep	24
2019	RACx Kukri	HIF	Printemps	UA lines 1056-2164-97-1314	GATTON	Australie	UA	IRR (2 dates de semis) x 4 rep	64
2020	RACx Kukri	HIF	Printemps	UA lines 2164-97-1314	DroughtSpotter (URRBRAE)	Australie	UA	DRY/ HEAT/CONTROL x 4 rep	72 pots
2021	RACx Kukri	HIF	Drintomas	UA lines 2164-1314	DraughtCnottor (LIDDDDAT)	Australia	UA	DRY/ HEAT/CONTROL	OC mats
2021	NACX KUKII	ПГ	Printemps	OA IIII62 2104-1314	DroughtSpotter (URRBRAE)	Australie	UA	(2 dates de semis) x 4 rep	96 pots
2022	RACx Kukri	HIF	Printemps	UA lines 2164-1314	DroughtSpotter (URRBRAE)	Australie	UA	DRY/ CONTROL x 4 rep	64pots
2021	RAC x Absalon	ВС	Hiver	RAC-R18-(03-07-08-09-19)	SAINT-PAUL-LES ROMANS	France	Heliantis	DRY/ IRR x 4 rep	96
2021	RAC x Absalon	ВС	Hiver	RAC-R18-(03-07-08-09-19)	WALLA WALLA	Etats-Unis	Limagrain	DRY/IRR x 4 rep	96


Variables mesurées: précocité, hauteur des plantes, humidité du grain, rendement à 15% d'humidité, poids de mille grains, poids spécifique et teneur en protéines du grain.

Caractérisation du stress rencontré : bilan hydrique précis, sondes tensiométriques et mesure des variables météo



Résultats sur les NIL fond hiver

- ✓ lignées NIL HIF RAC875 x ALTIGO, Gréoux-les-Bains 2021 :
- Bilan Hydrique et calcul d'indice de stress

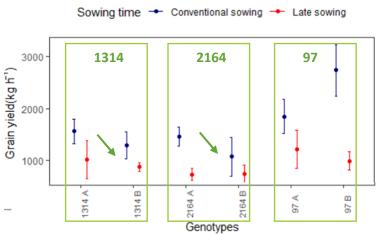
Mesures racinaires (rhizotubes) + données NDVI

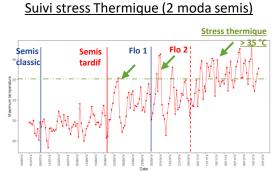
✓ Evaluation de l'effet rendement QTL+ / QTL-

Modalité non irriguée (stress hydrique)

- ✓ Pas d'effet positif sur le rendement (GY 15%) en condition de stress hydrique (-4 q.ha à Gréoux)
- ✓ Peu de stabilité du QTL sur les 6 lieux testés
- ✓ Données rhizotubes et NDVI peu exploitées
- ✓ Difficile d'expliquer le mécanisme physiologique

Résultats sur les NIL-BC fond hiver

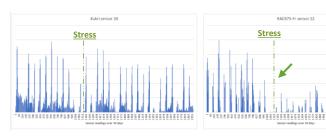

✓ lignées NIL BC RAC875 x ABSALON, condition non irriguée :


Walla walla 2021 Saint-Paul-Les-Romans 2021 SANT PULL ES ROMANS DRY 2021 - Rendement (g ha) (A) (B) (B) (B) (B) (CONTINUE, ROMANS DRY 2021 - Rendement (g ha) (B) (CONTINUE, ROMANS DRY 2021 - Rendement (g ha) (B) (CONTINUE, ROMANS DRY 2021 - Rendement (g ha) (B) (CONTINUE, ROMANS DRY 2021 - Rendement (g ha) (B) (CONTINUE, ROMANS DRY 2021 - Rendement (g ha) (CONTINUE, ROMANS DRY 2021 - Rendement (g ha) (B) (CONTINUE, ROMANS DRY 2021 - Rendement (g ha) (B) (B) (B) (B) (CONTINUE, ROMANS DRY 2021 - Rendement (g ha) (CONTINUE, ROMANS DRY 2021 - RENDEMENT DRY 2021

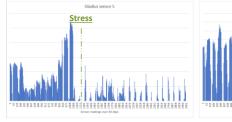
- ✓ Pas d'effet positif du QTL sur le rendement, sur les 2 lieux testés (matériel arrivé en fin de projet)
- ✓ Des variations entre les couples NIL observées (malgré un matériel très bien fixé au parent récurent LG-Absalon)

Résultats NIL fond printemps

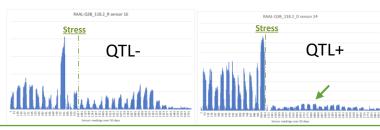
- ✓ lignées NIL HIF RAC875 x KUKRI :
- exemple Gatton 2019



Conclusions:


- ✓ Effet positif du QTL non confirmé en 2019
- ✓ Peu de stabilité du QTL sur les 7 environnements testés (4 lieux). Effet identifié à Mexico en 2018, non retrouvé

- ✓ Données flux de sève, plateforme DroughtSpotter :
- Stress hydrique et thermique + cond. optimale
- Kukri vs RAC875 en condition stressée



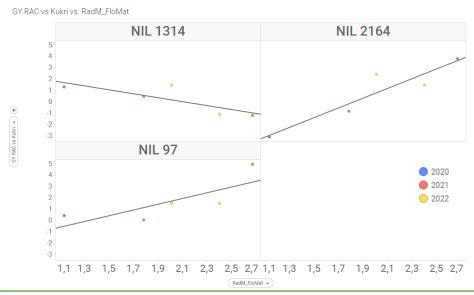
GLADIUS vs Mutant KO UBI 3B en condition stressée

NIL-HIF hiver RACxAltigo (QTL+ / QTL-)

Des variations du flux de sève observés en fonction des allèles au QTL

Résultats sur les NIL fond printemps

- ✓ lignées NIL HIF RAC875 x KUKRI, essais Espagne (3 années, 2 lieux, deux modalités d'irrigation)
- Rendement moyen sur les 4 répétitions (sec : DRY / irrigué : IRR)


Condition		Str	essé (Di	RY)			Ор	timal (II	RR)	
Année	2020	2021	2021	2022	2022	2020	2021	2021	2022	2022
Lieu	CAR	CAR	JER	CAR	JER	COR	COR	PA-ALB	COR	PA-ALB
INDIVIDUAL	YIELD	YIELD	YIELD	YIELD	YIELD	YIELD	YIELD	YIELD	YIELD	YIELD
RAC875	32,5	10,2	44,1	38,6	48,2	58,7	77,7	90,0	62,2	92,3
KUKRI	23,9	7,3	37,1	35,6	41,7	52,1	66,1	89,1	62,5	75,7
2164A	31,3	9,1	45,9	33,3	49,2	64,6	77,2	86,4	66,6	83,4
2164B	34,4	9,9	42,1	31,8	46,8	61,5	82,6	96,1	67,0	86,7
97A	25,3	7,0	40,0	36,3	37,7	54,8	66,1	85,5	49,1	82,9
97B	24,9	6,9	35,1	34,8	36,2	55,3	64,6	83,6	47,8	81,9
1314A	39,3	13,5	43,7	31,2	44,5	64,1	81,0	93,4	64,3	83,8
1314B	38,0	13,0	44,9	32,3	43,0	64,7	78,8	88,9	60,8	83,2

Différence de rendement entre allèle A (RAC875) et l'allèle B (KUKRI)

Condition		Str	essé (Di	RY)		Optimal (IRR)					
Année	2020	2021	2021	2022	2022	2020	2021	2021	2022	2022	
Lieu	CAR	CAR	JER	CAR	JER	COR	COR	PA-ALB	COR	PA-ALB	
Couple NIL		Effet rendement moyen en q.ha (allèle RAC875 - allèle KUKRI)									
Parents	8,6	2,9	7,0	3,1	6,4	6,7	11,7	0,9	-0,3	16,6	
2164	-3,1	-0,8	3,8	1,5	2,4	3,1	-5,4	-9,7	-0,4	-3,3	
97	0,4	0,1	4,9	1,5	1,5	-0,6	1,5	1,8	1,3	1,0	
1314	1,3	0,5	-1,2	-1,1	1,5	-0,6	2,2	4,5	3,5	0,6	

- ✓ Quelles variables pourraient expliquer les variations d'effet du QTL en conditions de stress hydrique ?
- 29 indices testés, liés au stress hydrique et thermique ...

Exemple : SommeRadiations_Floraison à Maturité

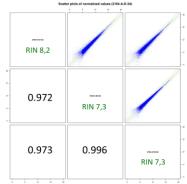
- Des effets sur le rendement, plus visibles dans le fond printemps.
- ✓ Toujours peu de stabilité du QTL sur les 5 essais
- Des variations en partie corrélées aux indices de stress hydrique post Floraison

4- Analyse d'expression du gène UPB

Design expérimental:

- √ 48 échantillons
- √ 4 lignées NIL-HIF printemps (2 pairs)
- ✓ 1314 A B & 2164 A B
- ✓ 2 traitements : Irrigation optimale (WW) / Sec (D)
- ✓ 2 dates après début stress: 3 jours/ 10 jours
- ✓ NovaSeq 6000, 70M cluster par échantillon, PE 2x100

Résultats:


> 79 300 gènes exprimés (> 5 reads / 25% échantillons)

HC: 60 345 + LC: 18 964

Analyse genes diff. exprimés / DeSeq2

Corrélation réplicats: R²> 0.9

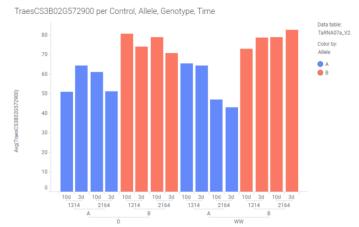
Line name	Allele	Туре
1314 A	RAC	HIF
1314 B	Kukri	HIF
2164 A	RAC	HIF
2164 B	Kukri	HIF

- ✓ Analyse de l'expression des gènes de la zone du QTL 3B :
- ✓ NIL 1314 A vs B, stress hydrique, 10 jours

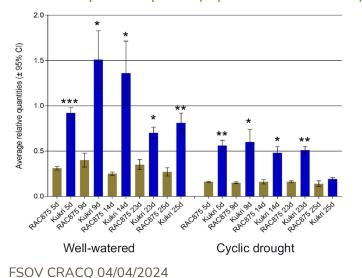
Genes	chr		pos	log2FoldCha	pvalue	padj	1314-A-D1-10d	1314-A-D3-10d	1314-A-D4-10d	1314-B-D1-10d	1314-B-D2-10d	1314-B-D3-10d
TraesCS3B02G841500LC	chr3B		799003742	0,32303005	0,49144971	0,99999503	34,30819926	15,22346998	35,63287908	24,10937176	18,59919447	26,6891602
TraesCS3B02G567500	chr3B		799101715	-0,24485441	0,45866796	0,99999503	520,8608433	219,2179677	501,467591	370,7855105	654,5145102	449,9029863
TraesCS3B02G841700LC	chr3B		799207204	-0,60215328	0,48003468	0,99999503	3,118927205	12,17877598	3,476378447	12,4703647	9,7424352	4,765921465
TraesCS3B02G568500	chr3B		800137899	0,15820522	0,38148327	0,99999503	1867,197754	2073,436611	2347,424546	1823,998677	2215,96117	1595,630506
TraesCS3B02G843300LC	chr3B		800187901	0,16534195	0,84630803	0,99999503	4,158569607	3,044693996	20,85827068	6,650861175	9,7424352	9,53184293
TraesCS3B02G843400LC	chr3B		800189558	-0,34594127	0,43505517	0,99999503	18,71356323	16,74581698	25,20374374	24,10937176	29,2273056	24,78279162
TraesCS3B02G846400LC	chr3B		801117337	-0,1748756	0,85932326	0,99999503	4,158569607	1,522346998	9,560040729	2,494072941	9,7424352	5,719105758
TraesCS3B02G569900	chr3B		801303762	1,95545672	0,08101998	0,99999503	7,277496812	3,044693996	9,560040729	3,325430587	0,885675927	0,953184293
TraesCS3B02G570900	chr3B	candi	802846191	-0,162	0,455	1,000	172,6	207,0	161,7	170,4	225,0	207,8
TraesCS3B02G571000	chr3B	candi	802849205	0,02619451	0,88206684	0,99999503	280,7034485	252,7096017	298,9685464	261,0463011	269,2454819	289,7680251
TraesCS3B02G571600	chr3B		803053759	-0,77493598	0,26203268	0,99999503	13,51535122	3,044693996	15,64370301	11,63900706	30,99865745	14,29776439
TraesCS3B02G850700LC	chr3B		803055481	-0,56473272	0,60854461	0,99999503	4,158569607	1,522346998	5,21456767	4,988145881	10,62811113	0,953184293
TraesCS3B02G571800	chr3B		803097599	-0,17410754	0,61048415	0,99999503	59,2596169	38,05867495	57,36024437	45,72467058	73,51110196	57,19105758
TraesCS3B02G572000	chr3B		803133191	-0,58824984	0,2478587	0,99999503	22,87213284	12,17877598	52,1456767	37,41109411	55,79758342	40,9869246
TraesCS3B02G572900	chr3B	SINA	803628607	-0,63664304	0,03189549	0,99999503	69,65604092	42,62571595	77,34942044	93,94341409	109,823815	95,3184293
TraesCS3B02G573200	chr3B		804115436	-0,33455404	0,67392888	0,99999503	3,118927205	12,17877598	6,952756894	13,30172235	5,314055564	8,578658637
TraesCS3B02G573400	chr3B		804167969	0,46340376	0,07293064	0,99999503	114,3606642	114,1760249	86,90946117	72,32811528	72,62542604	82,92703349
TraesCS3B02G573500	chr3B		804214365	0,43748727	0,42446286	0,99999503	14,55499362	19,79051097	18,25098685	16,62715294	13,28513891	8,578658637
TraesCS3B02G573600	chr3B		804228546	-0,05125985	0,91274432	0,99999503	29,10998725	13,70112298	24,33464913	27,43480235	20,37054633	22,87642303
TraesCS3B02G573700	chr3B		804237819	0,08121731	0,64398301	0,99999503	264,06917	295,3353176	270,2884242	241,0937176	266,5884541	275,4702607

- ✓ Pas de gènes significativement différentiellement exprimés
- ✓ Sous-expression faible du gène UBP 3B portant l'allèle RAC875

	Genes		chr		pos	log2FoldCha	pvalue	KUK
	TraesCS	3B02G572900	chr3B		803628607	-0,63664304	0,03189549	RAC
1314-A	-D1-10d	1314-A-D3-10d	1314-A-	D4-10d	1314-B-D1-1	0d 1314-B-D2	-10d 1314-B-I	D3-10d
69,6	5604092	42,62571595	77,34	942044	93,943414	09 109,82	3815 95,3	184293


FSOV CRACQ 04/04/2024 15

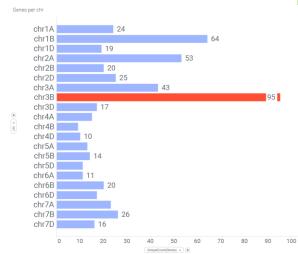
4- Analyse d'expression du gène UPB


Sous-expression du gène UBP 3B:

Co-régulations associées :

Données RNAseq (A: RAC / B: KUKRI)

Confirmé par RTqPCR (Optimal et Stressé)



A l'échelle du génome

Log2Fold Change distribution par chromosome

Log2fold Change >1 et Pval < 0.05

- UBP_3B variation d'expression assez faible entre les allèles RAC875 et KUKRI : Log2fold Change de 0,63 et pval de 0.03 (confirmé par RTgPCR)
- De nombreux gènes différentiellement exprimés à l'échelle du génome (effet HIF?)
- Analyses à poursuivre pour identifier les processus biologiques et voies métaboliques affectées par le gène UBP (co-expressions, régulations ...)

Conclusions et perspectives

- ✓ Coordination du projet complexe (Covid, réorganisations, distance)
- ✓ Meilleure connaissance du QTL qDHY.3BL
- ✓ Expertise génomique, Eco-Tilling, Tilling
- ✓ Des marqueurs moléculaires et des lignées NIL disponibles pour la sélection
- ✓ Nombreux essais sous contrainte de stress hydrique et thermique
- ✓ Effet dans les blés de printemps retrouvé, mais manque important de stabilité
- ✓ Effet dans les fonds hiver non confirmé (sols et stress EU actuels très différents de l'Australie)
- ✓ Gène candidat non validé pendant le projet , mais des mutants disponibles
- ✓ Analyse des voies métaboliques affectées par le gène UBP à poursuivre
- ✓ Méthodologie d'analyse utile pour d'autres projets, analyses QTLs

Jordi COMADRAN Ryan JOYNSON Lauriane CHASSAING Nadine DURANTON Sébastien PRAUD Noemie BAKKAUS Anne-Valérie DUMAS Hervé DUBORJAL Adeline CLEMENTI Bernard DUPERRIER Yann PERROCHON Magalie LEVEUGLE Lenaick JEHANNIN Gaëtan TOUZY

Delphine FLEURY
Penny TRICKER
Diane MATHER2
Scott BODEN